A Fourier restriction theorem for a perturbed hyperbolic paraboloid: polynomial partitioning

نویسندگان

چکیده

Abstract We consider a surface with negative curvature in $${{\mathbb {R}}}^3,$$ R 3 , which is cubic perturbation of the saddle. For this surface, we prove new restriction theorem, analogous to theorem for paraboloids proved by L. Guth 2016. This specific has turned out be fundamental importance also understanding more general classes one-variate perturbations, and hope that present paper will further help pave way study perturbations saddle means polynomial partitioning method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Trilinear Restriction Problem for the Paraboloid in R

We establish a sharp trilinear inequality for the extension operator associated to the paraboloid in R3. Our proof relies on a recent generalisation of the classical Loomis–Whitney inequality.

متن کامل

A locally optimal triangulation of the hyperbolic paraboloid

Pascal Desnoguès Olivier Devillers y Abstract: Given a set S of data points in IR2 and corresponding data values for a speci c non-convex surface, the unit hyperbolic paraboloid, we consider the problem of nding a locally optimal triangulation of S for the linear approximation of this surface. The chosen optimality criterion will be the L2 norm: it means that we will try to nd directly a triang...

متن کامل

A Perturbed Sums of Squares Theorem for Polynomial Optimization and its Applications

We consider a property of positive polynomials on a compact set with a small perturbation. When applied to a Polynomial Optimization Problem (POP), the property implies that the optimal value of the corresponding SemiDefinite Programming (SDP) relaxation with sufficiently large relaxation order is bounded from below by (f∗ − 2) and from above by f∗ + 2(n+ 1), where f∗ is the optimal value of th...

متن کامل

On the Restriction of the Fourier Transform to Polynomial Curves

We prove a Fourier restriction theorem on curves parametrised by the mapping t 7→ P (t) = (P1(t), . . . , Pn(t)), where each of the P1, . . . , Pn is a real-valued polynomial and t belongs to an interval on which each of the P1, . . . , Pn “resembles” a monomial.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM

In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2022

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02948-8